S. S. T. COLLEGE OF ARTS AND COMMERCE

Master of Science (Computer Science)

Programme Outcome

PO1	To be fundamentally strong at core subject of Computer Science
PO2	To apply programming and computational skills for industrial solutions
PO3	Broad understanding of latest technological trends
PO4	To identify opportunities for establishing an enterprise for immediate Employment
PO5	Able to understand and apply fundamental research concepts
PO6	Able to use efficient soft skills for professional development
PO7	Engage in independent and life-long learning for continued professional development

Course outcome

Sem - I

Course: Algorithm For Optimization

CO1	You will be able to effectively implement optimization techniques to
	the existing algorithm to improve its performance
CO2	You will be able to work in the areas of Machine Learning and Data
	Sciences Algorithms

Course: Software Defined Networking

CO 1	To make the students capable of understanding computer network basics
CO2	To Obtain the knowledge of Software defined networks with understanding of data plane, control plane and application plane
CO3	To apply network virtualization for industry standard solutions
CO4	To improve skills in implementing network virtualization and Software Defined Network (SDN)

Course: Applied Signal And Image Processing

CO1	Introduce the concepts of signal processing terms and relate them
	to image processing
CO2	Learn about basic image processing techniques (e.g., noise removal
	and image enhancement)
CO3	Develop skills to design and implement algorithms for advanced
	image analysis
CO4	Apply image processing to design solutions to real-life problems

Course: Advanced Database Techniques

CO1	To cover advanced topics of databases to become more proficient
CO2	To provide students with theoretical knowledge and practical skills
	in advanced topics in database systems, big data and modern data-
	intensive systems
CO3	To Expand Students, view and introduce advanced topics and
	Business Intelligence

SEM- II

Course: Applied Machine And Deep Learning

 CO1 Developing projects in machine learning for industrial applications
CO2 Understanding and implementing algorithms and techniques of Machine Learning useful in the field of Data Science, Image Processing, NLP, etc

Course: Natural Language Processing

CO1	Understanding the importance and concepts of Natural Language
	Processing (NLP)
CO2	Applying algorithms available for the processing of linguistic
	information and computational properties of natural languages
CO3	Knowledge on various morphological, syntactic, and semantic NLP
	tasks
CO4	Introducing various NLP software libraries and data sets publicly
	available
CO5	Designing and developing practical NLP based applications

Course: Web Mining

CO1	To Understand the difference between Web Mining and Data mining
CO2	To Understand the Basics and Needs of Web Mining
CO3	To Understand Web-based Data
CO4	To Understand Opinion Mining and Sentiment classification

Course: Embedded And Iot Technology

CO1	The course is designed to enable students, to understand and
	implement IoT in industry
CO2	Design and executive projects in IoT with Automatic Identification
	and Data Capture

SEM - III

Course: Advanced Computing (Web Technologies)

CO1	To cover the technical aspects of cryptocurrencies, blockchain
	technologies, and distributed consensus
CO2	To familiarize potential applications for Bitcoin-like cryptocurrencies
CO3	To Basics of smart contracts, decentralized apps, and decentralized
	anonymous organizations (DAOs)
C04	To know Solidity programming

Course: Security (Cryptography and Cryptoanalysis)

CO1	To develop the foundation for the study of cryptography and its use
	in security
CO2	To understand the application of Number Theory and Algebra for
	the design of cryptographic algorithms
CO3	To understand the role of cryptography in communication over an
	insecure channel
CO4	To analyze and compare symmetric-key encryption and public-key
	encryption schemes based on different security models

Course: Computer Networking (Wireless Networking)

CO1	To understand basic concepts of wireless networking
CO2	To understand 4G, 5G Technologies and their working
CO3	To implement Wireless architecture practically
CO4	To gain knowledge about sensors and their working

Course: Data Science (Data Visualization)

CO1	Familiarity with working with data analysis tools
CO2	Ability to perform data wrangling for practical purposes
CO3	Ability to solve real-world data analysis problems with thorough, detailed examples
CO4	Ability to use Tableau to handle data from various sources and perform analysis of data

Sem-IV

Course: Robotics (Online Mode)

CO1	Leverage the features of the Raspberry Pi OS
CO2	Discover how to configure a Raspberry Pi to build an AI-enabled
	robot
CO3	Interface motors and sensors with a Raspberry Pi
CO4	Code robot to develop engaging and intelligent robot behaviour
C05	Explore AI behaviour such as speech recognition and visual processing Advanced

Course: Deep Learning (Online Mode)

CO1	Understand the context and use of neural networks and deep
	learning
CO2	Understand the tools and libraries for deep learning
CO3	Have a working knowledge of neural networks and deep learning
CO4	Explore the parameters for neural networks
CO5	Identify emerging applications of deep learning