S. S. T. COLLEGE OF ARTS AND COMMERCE

Bachelor of Science (Computer Science)

Programme outcome

PO1	An ability to apply knowledge of computing and mathematics appropriate to the discipline
PO2	An ability to identify, formulates, and develops solutions to computational challenges
PO3	An ability to design, implement, and evaluate a computational system to meet desired needs within realistic constraints
PO4	An ability to function effectively on teams to accomplish shared computing design, evaluation, or implementation goals
PO5	An understanding of professional, ethical, legal, security, and social issues and responsibilities for the computing profession
PO6	An ability to communicate and engage effectively with diverse stakeholders
PO7	An ability to analyze impacts of computing on individuals, organizations, and society
PO8	Recognition of the need for and ability to engage in continuing professional development
PO9	An ability to use appropriate techniques, skills, and tools necessary for computing practice
PO10	An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modelling and design of computational systems in a way that demonstrates comprehension of the trade-offs involved in design choices
PO11	An ability to apply design and development principles in the construction of software systems of varying complexity

Course Outcome

Sem -I

Course: Soft Skill Development

CO1	To know about various aspects of soft skills and learn ways to
	develop personality
CO2	Understand the importance and type of communication in personal
	and professional Environment
CO3	To provide insight into much needed technical and non-technical
	qualities in career planning
CO4	Learn about Leadership, team building, decision making and stress
	management

Course: Open Source Technologies

CO1	Upon completion of this course, students should have a good working knowledge of Open-Source ecosystem, its use, impact and
	importance
CO2	This course shall help student to learn Open- Source methodologies,
	case studies with real life examples

Course: Descriptive Statistical Technique And Probability

CO1	Understand various quantitative & statistical methods
CO2	Understand data and draw inference from data
CO3	Calculate and interpret statistical values by using statistical tool
	(correlation & regression)
CO4	Demonstrate an ability to apply various statistical tools to solve
	business problem

Course: Database Management System

CO1	Students should be able to evaluate business information problems
	and find the requirements of a problem in terms of data
CO2	Students should be able to design the database schema with the use
	of appropriate data types for storage of data in the database.

Course: Discrete Mathematics

CO1	Ability to apply mathematical logic to solve problems
CO2	Understand sets, relations, functions and discrete structures
CO3	Able to use logical notations to define and reason about fundamental
	mathematical concepts such as sets relations and functions
CO4	Able to formulate problems and solve recurrence relations
CO5	Able to model and solve real world problems using graphs and trees

Course: Introduction To Programming With Python

CO1	Students should be able to understand the concepts of programming
	before actually starting to write programs
CO2	Students should be able to develop logic for Problem Solving
CO3	Students should be made familiar about the basic constructs of
	programming such as data, operations, conditions, loops, functions
	etc
CO4	Students should be able to apply the problem solving skills using
	syntactically simple language

Course: Computer Organization and Design

CO1	To understand the structure and operation of modern processors an
	their instruction sets
CO2	It understands various programming languages that suppo
	instruction set architecture
CO3	To explore and understand the concepts of main components of a
	processor
CO4	Knowledge of fundamentals concepts of pipeline and vector
	processing

Sem 2

Course: Calculus

CO1	Understanding of Mathematical concepts like limit, continuity,
	derivative, integration of functions
CO2	Ability to appreciate real world applications which uses these
	concepts
CO3	Skill to formulate a problem through Mathematical modeling and
	simulation

Course: Linux

CO1	Upon completion of this course, students should have a good
	working knowledge of Linux, from both a graphical and command
	line perspective, allowing them to easily use any Linux distribution
CO2	This course shall help students to learn advanced subjects in
	computer science practically
CO3	Students shall be able to progress as a Developer or Linux System
	Administrator using the acquired skill set

Course: Statistical Methods And Testing Of Hypothesis

CO1	Enable learners to know descriptive statistical concepts
CO2	Enable study of probability concept required for Computer learners

Course: Programming With C

CO1	Students should be able to write, compile and debug programs in
	C language
CO2	Students should be able to use different data types in a computer
	program
CO3	Students should be able to design programs involving decision
	structures, loops and functions
CO4	Students should be able to explain the difference between call by
	value and call by reference
CO5	Students should be able to understand the dynamics of memory
	by the use of pointers
CO6	Students should be able to use different data structures and
	create/update basic data files

Course: Programming With Python – II

CO1	Students should be able to understand how to read/write to files
	using python
CO2	Students should be able to catch their own errors that happen
	during execution of programs
CO3	Students should get an introduction to the concept of pattern
	matching
CO4	Students should be made familiar with the concepts of GUI
	controls and designing GUI applications
CO5	Students should be able to connect to the database to move the
	data to/from the application
CO6	Students should know how to connect to computers, read from
	URL and send email

Course: Data Structure

CO1	Learn about Data structures, its types and significance in
	computing
CO2	Explore about Abstract Data types and its implementation
CO3	Ability to program various applications using different data
	structure in Python

Course: Green Technologies

CO1	Learn about green IT can be achieved in and by hardware, software, network communication and data center operations
CO2	Understand the strategies, frameworks, processes and
	management of green IT

Sem 3

Course: Combinatorial And Graph Theory

CO1	Demonstrate the knowledge of Fundamental concepts in graph theory, including properties and characterization of graphs and trees
CO2	Use graphs for solving real life problems
CO3	Distinguish between planar and non-planar graphs and solve problems
CO4	Develop efficient algorithms for graph related problems in different domains of engineering and science

Course: Physical Comp & IOT Prog

CO1	Enable learners to understand System on Chip Architectures
CO2	Introduction and preparing Raspberry Pi with hardware and installation
CO3	Learn physical interfaces and electronics of Raspberry Pi and program them using practical
CO4	Learn how to make consumer grade IoT safe and secure with proper use of protocols

Course: Database Management System

CO1	Students should be able to understand the concepts of
	programming before actually starting to write programs
CO2	Students should be able to develop logic for Problem Solving
CO3	Students should be made familiar about the basic constructs of
	programming such as data, operations, conditions, loops,
	functions etc

Course: Core Java

CO1	Object oriented programming concepts using Java
CO2	Knowledge of input, its processing and getting suitable output
CO3	Understand, design, implement and evaluate classes and applets
CO4	Knowledge and implementation of AWT package

Course: Theory Of Computation

CO1	Understand Grammar and Languages
CO2	Learn about Automata theory and its application in Language Design
CO3	Learn about Turing Machines and Pushdown Automata
CO4	Understand Linear Bound Automata and its applications

Course: Web Programming

CO1	To design valid, well-formed, scalable, and meaningful pages using
	emerging technologies
CO2	Understand the various platforms, devices, display resolutions,
	viewports, and browsers that render websites
CO3	To develop and implement client-side and server-side scripting
	language programs
CO4	To develop and implement Database Driven Websites
CO5	Design and apply XML to create a markup language for data and
	document centric applications

Course: Operating System

CO1	To provide an understanding of the operating system, its
	structures and functioning
CO2	Develop and master understanding of algorithms used by
	operating systems for various purposes

Sem 4

Course: Fundamental Of Algorithm

CO1 Understand the concepts of algorithms for designing good programCO2 Implement algorithms using Python

Course: Advanced Java

CO1	To remember the concepts of Core Java
CO2	Understand the concepts related to servlets of Java Technology
CO3	To use of Java Server Programming
CO4	Students should create applications using Java Beans, MVC Architecture & JDBC

Course: Computer Networks

C01	Learners will be able to understand the concepts of networking, which are important for them to be known as networking professionals
CO2	Useful to proceed with industrial requirements and International vendor certifications

Course: Software Engineering

CO1	To provide knowledge of software engineering discipline
CO2	To analyze risk in software design and quality
CO3	To introduce the concept to advance software methodology

Course: Net Technologies

CO1	Understand the .NET framework
CO2	Develop a proficiency in the C# programming language
CO3	Proficiently develop ASP.NET web applications using C#.
CO4	Use ADO.NET for data persistence in a web application

Course: Linear Algebra Using Python

CO1	Appreciate the relevance of linear algebra in the field of computer science
CO2	Understand the concepts through program implementation
CO3	Instill computational thinking while learning linear algebra

Course: Android Developer Fundamentals

CO1	Understand the requirements of the Mobile programming
	environment
CO2	Learn about basic methods, tools and techniques for developing
	Apps
CO3	Explore and practice App development on Android Platform
CO4	Develop working prototypes of working systems for various uses in
	daily lives

Sem-V

Course: Information And Network Security

CO1 To provide students with knowledge of basic concepts of computer security including network security and cryptography

Course: Game Programming

CO1 Learners should get the understanding of computer Graphics programming using Directx or Open Along with the VR and AR they should also be aware of GPU, newer technologies and programming using the most important API for windows

Course: Software Testing And Quality Assurance

CO1 Understand various software testing methods and strategies
CO2 Understand a variety of software metrics, and identify defects and managing those defects for improvement in quality for given software
CO3 Design SQA activities, SQA strategy, formal technical review report for Software quality control and assurance

Course: Artificial Intelligence

CO1	To impart knowledge about Artificial Intelligence
CO2	To give understanding of the main abstractions and reasoning for intelligent systems
CO3	To get a clear understanding of AI and different search algorithms used for solving problems
CO4	To enable the students to understand the basic principles of Artificial Intelligence in various applications

Course: Web Services

CO1	Emphasis on SOAP based web services and associated standards such as WSDL
CO2	Design SOAP based/ RESTful/ WCF services Deal with Security and QoS issues of Web Services

Sem-VI

Course: Wireless Sensor Networks And Mobile Communication

CO1	After completion of this course, the learner should be able to list
	various applications of wireless sensor networks, describe the
	concepts, protocols, design, implementation and use of wireless
	sensor networks
CO2	Also implement and evaluate new ideas for solving wireless sensor
	network design issues

Course: Digital Image Processing

CO1	Learners should review the fundamental concepts of a digital image
	processing system
CO2	Analyze the images in the frequency domain using various
	transforms
CO3	Evaluate the techniques for image enhancement and image
	segmentation. Apply various compression techniques
CO4	They will be familiar with basic image processing techniques for
	solving real problems

Course: Ethical Hacking

CO1	Learner will know to identify security vulnerabilities and
	weaknesses in the target applications
CO2	They will also know how to test and exploit systems using various
	tools and understand the impact of hacking in real time machines

Course: Data Science

CO1 The students should be able to understand & comprehend the problem and should be able to define suitable statistical methods to be adopted

Course: Cloud Computing

CO1	Learner should be able to articulate the main concepts, key
	technologies, strengths, and limitations of cloud computing and the
	possible applications for state-of-the-art cloud computing using
	open source technology
CO2	Learners should be able to identify the architecture and
	infrastructure of cloud computing, including SaaS, PaaS, IaaS,
	public cloud, private cloud, hybrid cloud, etc
CO3	They should explain the core issues of cloud computing such as
	security, privacy, and interoperability